














where    z      is the value of   z   belonging to one of the points of inter- 

section of a straight line parallel to the t-axLs with the boundary of 

R.    Evidently, F^n' = g    satisfies (2.12).    Furthermore, 

if—* ?!•-<> (2.15) 

because of (2.1).    Hence, 

2n-m-3 
Vng"  jEj   '"W- 

Now, let g#(o,z)    be defined by 

2n-m-3 

Ah2n-m-3 " f2n-m-3, 

(2.16) 

Ah2n-m-U" f2n-m-li 

Ab^ = fk - c* (k + l)(k + 2)hk + 2 (k = 0,l,...,2n-m-5), 

The function g^ so determined has the properties 

-(2.17) 

Vi «. = K&' -f—2«.-o. (2.18) 

It follows from (2.13),  (2.18) that 

F(D) = g - g# (2.19) 

satisfies both (2.8) and (2.12). This completes the proof of the theorem. 

Successive applications of the foregoing theorem at once yield a 

representation of any solution of 

i = 1 
VI F = 0 (2.20) 

in terms of solutions    F    '    of the equations (i) 
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V [ F(i) = 0 (i = 1, 2,   ..., n). (2.21) 

In particular, if all    cr (i = 1, 2,  ..., n)    are distinct^ 

n 

X F =   >      F(k), (2.22) 

•whereas if all    c,     coalesce, 

n 

F = N 7 zk F(k). (2.23) 

In connection with the plane problem of elasticity theory for an 

orthotropic medium, special interest is attached to the case in which 

(2.2) assume the form, 

2 
Here p and z are Cartesian coordinates, and \7  i3 a modified two- 

dimensional Laplacian operator. In the rotationally symmetric problem 

appropriate to a medium with transverse isotropy, on the other hand, we 

encounter the case in which 

*.32    ia _2_ a2 . i a .  2 a2 f0 90 A = —* + - —- * Vi = 7-5 + • c. —-* , (2.25) 
ay   j9 3yo *    ay   p ay>    i 3z^ 

2 
where p and z are circular cylindrical coordinates and V.. is a 

modified axisymmetric Laplacian operator. 

Finally, if v\    ifi (2*20) is defined as in (2.2U) or (2.25), and 
2 

c. = 1 (i = 1,  2,   ..., n), then (2.23) becomes identical with Almansi's 

Ql2|] representation of the general solution of    V   *F = 0    in terms of 

2 
harmonic functions, for the case in which    r^     is the two-dimensional or 

the axisymmetric three-dimensional Laplacian operator.    This special in- 

stance arises in the well known applications of Almansi's theorem to the 

plane and to the rotationally symmetric problem in the classical theory 

of elasticity of isotropic media. 



3.      Stress-Straiu Relations and Strain-Energy Function for a Medium 

with Transverse Isotropy 

Let us, temporarily, adopt the notation, 

ri = fxK> r2 - ^ *3 = Y*z> fh = ^' r$ = 'zx' ^6 = Ky'> 

l       xx'    2       yy*    3       zz*    u       yz*    5       zx*    o xy 

(3.D 

Here, 'f  .  ...    and e , ... are the Cartesian components of stress 
XX XX 

and "infinitesimal" strain, the strains being defined by 

exx = \,x>  ••••    eyz = uy,z + uz,y>  — (3'2) 

where     u , u , u       are the Cartesian scalar components of the displace- 

ment vector. 

The general linear stress-strain law now assumes the form, 

*i • cij *y (3*3) 

in which    i,j    range over the integers one to six, and the usual summation 

convention is employed.    For a homogeneous medium the    c. .    are constants. 

A necessary and sufficient condition for the existence of a strain- 

energy function   W(e,,   ..*,  e^), such that 

A = gj <3.M 
is that 

cJ±=cir (3.5) 

Moreover, \ 

 5 
W = ? Ci 1 ei ej * ^3*6^ 

Note that the present definition of the elastic constants    c. . 
coincides with thai adopted by Love Til, p. 99. ^ ': 

9 i! 



We now Impose the condition (transverse isotropy) that the stress-strain 

law (3.3),  (3.5) be invariant under an arbitrary rotation about the 

z-axis.    This is the case if and only if 

ci;J = 0     (i = 1,2,3; 1 = U,5,6), (i = U,5,Cj J t i) 

cll = c22» °13 = C23' CUi = Ctt> 2C66 = cll " c12* 

•(3.7) 

With the notation, 

cll = a» c33 = *' Chh */**  c66 V* 

c^ = a - 2/7, c13 = b, 

(3.8) 

the stress-strain law (3*3),  (3*5), subject to (3.7)>  (3.8), becomes 

fir = ae~ + (a - 2/T) a^. • be., 'xx xx ir yy zz 

fyy=aeyy + (a " 2A>exr + be zz 

7i,s b(e     + e ) • ae zz xx        yy' zz 

^yz = /*eyz'        ^zx = /<ezx'        ^xy V V 

(3.9) 

whereas (3*6) appears as 

10 

2W = a(e^ + ejy) + Se^ + 2(a - 2/4,) e    e xx yy 

+ 2b(e     + 0©w„ +/^(QL • elj +M< xx       yy    zz     ~     yz        zx     /*   3 (3.10) yy   zz    /^     yz        zx'    /—   xy~ 

The stress-strain relations (3*9) involve five independent elastic con- 

stants, of which JX    and ju[   have an obvious physical meaning. 

Inverting the first three of (3*9), we reach 
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where 

eyy = 1 \?» • * *KX " 7rz •] 

e     .If/     - 3 (/     • /   )1 zz     g L zz       IT wxx       yy J* 

_ k/ljaa. - b   - a/l) g _ aa - b   - a/£ 

(3.11) 

aa - b a -/" 

aa - b aa - b 

(3.12) 

Furthermore, 

E= 2^(1 + j)) (3.13) 

The physical significance of the four new elastic constants defined in 

(3,12) is immediate from (3.11). 

A trivial computation, based on (3»10), yields the following neces- 

sary and sufficient conditions for the positive definiteness of W: 

a > 0, a > 0, u > 0, ju > 0, aa - b2 - a/7 > 0, (3.1U) 

or, equivalently, 

E > 0, E > ot/U > o,/7 >0, -!<>>< 1, l->)>2 £J-. (3.15) 

In the special case of isotropy, we have 

E 

._ Z_JU7> 

M V* = 2(1+ 5T# 
(3.16) 



U.  Basic Equations for a Medium with Transverse Isotropy In the Case of 

Torsionles3 Axi symmetry 

With reference to cylindrical coordinates (p, 0, y), where 

x = o cos y,    y = p  sin y,    z = z. (1.1) 

the displacement field in the presence of torsionless axisynanetry about 

the z-axis, is characterized by 

The associated field of strain now becomes 

e     = u .....i. ZZ ^z' 

e     = u       + u      , pz      JO,Z        z,p» eyj>=ezy=0> 

and, according to (3»9)» the stress-strain relations are 

/yy=ae/y+(a-2j)ey>+bezz 

(U.2) 

(U.3) 

*i« = 5ezz + b(eyc)o 
+ V 

^>z =/">*>   ^y/,= ^z=
0' 

The stress equations of equilibrium, in the absence of body forces, by 

virtue of (h»2)f  (li.3), and (b.U) here reduce to 

(WO 

r    + r   + &—#=o 

yoz^o  'zz,z     jo 

> (U.5) 

12 
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and substitution of (U.2), (h.3)> (U.U) into (h.5) yields 

ae  -f UM + (LL -f b - a)u   = 0, 
j^o  / />>zz  / z>pz 

(/, + b)e>z +/^|^u ) - (^ * b - 5)u2jZZ = o, 
r     r i 

tt.6) 

is which 

e = e 
J3P 

1 9 + v*•« 7 ^ ^>>+ u*.*- (k.7) 



5.  Derivation and Completeness of Lekhnitsky's Stress-Function Approach 

Suppose u (p,z) and u (o,z) satisfy the equilibrium equations (U.6) 

in a region R of the meridional half-plane o - 0, -oo < z  < co, and let 

R have the property that straight lines parallel to the coordinate axes 

intersect the boundary of R in at most two points. We may then define 

two functions U(p,a) and 7(c,z) by means of 

u = U , u = V P $p* Z    ,Z 

For convenience, we introduce the operators 

do       ode p dp       op 

D   «±. 2   dz 

(5.1) 

(5.2) 

h (5,3) 

V     being the axisymmetric Laplacian.    Substitution of (5.1) in (li.6), 

with the aid of (1.7) and (5.2), yields 

— [a V* U + //r^J + {/J. + b) D£ vl = 0 

^ [(/£ • b) V*V +JULVl V * iD^] = 0, 

or, since (5.1) determine   U   and   V   only within arbitrary additive 

functions of   z    and   p, respectively, 

avjl + /UV$0 + (// + b) D^V = 0 

(/I + b) V Jj + /<V»V + aD^V = 0 

On eliminating first    V   and then   U    between (5.1j), we reach 

(5.1i) 

JTLU = o,       nv = o, (5.5) 

U 
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the operator   -fL being given by 

ILm vh + aa-s^b-b2 VV + | A (S.6) 

Consistent with the notation introduced in (2.2), we now define the 

o 
operator   V*"   through 

Vi = V, • <££     (i = l» 2) (5.7) 

and seek to determine the coefficients    cr, ct   in such a way that 

jfL=V2vf. (5.8) 

To this end, we expand the right-hand member of (5.8) as a polynomial in 

V?> «     and equate its coefficients to the corresponding coefficients 

appearing in (5*6).    This leads to 

.2.J. aa - 2b/U. - b2 2    2 _   a r- _» 

^       2      a^  ' 2 ' 
2  2 

so that c, , ct   are the roots of the quadratic, 

Q(£) = f+}£±m-=-&£ +-|-=o- <*-io) 

The inequalities (3»lh) imply that Q( £) cannot have a negative or 

vanishing root. Conditions (3«lU), however, do not preclude the exist- 

2 2 ence of complex roots.    Indeed, cT    and    ct    are real and distinct,  co- 

alescent, or conjugate complex, according as 

aa - (2/^ +b)2 JO. (5.11) 

In the special instance of isotropy we conclude from (3.16), (5.10) that 

o| * e| • 1, whence v\ « V2 (i • 1, 2) and !}_= V1*. 

i 



IXC 

In view of ($.$),  (5.8), and by virtue of the theorem proved in 

Section 2, U    admits the representation 

(1)        k    (2) 
U = B        + z    B 

9    (1) 0    (2) 
V£ B        - 0, V| B        =0 

(5.12) 

where 

k = 

0 if 4* 4 
1 if 4 = 4- 

> new functions   A 

> 
(2) 

B 
(2) 
,zz 

V2 V2 

(2) 
A : 0. 

(5.13) 

(l)   (2) 
It is expedient to define two new functions Au>,z), A(p,z) by means of 

(1)   (1)    (2) 
B   = A   + kA ,z    ,z 

2 (1) 

v; A    =o, 

From (5.1M, (5.12), (5.13), (5.7) follows 

r (1)   k (2)-, 
U = De [A   f z

k A)Z j 

.2.(1). _2_k.(2) .,.2 (2) 

-(5.1U)7 

V^ = -^[^A  • c- z~ LfZ - 2kcJ A ] 

(5.15) 

(5.16) 

Substituting (5.15), (5.16) in the first of (5.U)» and performing two 

successive z-integrations, we obtain 

(1)    ,     „ (2) 
(ac£ -/^)A  + (ac^-/a)z

KA< 

„ (2) 

z 

- 2aCgkA  • 8 f, • » f, , (5.17) 

where f. and f_ are functions of p alone. We first treat the general 

case in which the degeneracy U. - - b is ruled out. 
 - — _- _ 

'The existence of V  '    and Av '    is readily verified with the aid 
of the last two of (5.12). 
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Case 1: n. • b ^ 0 

In order to determine the nature of the functions f., f_, we substi- 

tute (5.16), (5.17) into the second of C5-U)- This lengthy computation, 

with the aid of (5.10), (5.13), (5.1U), leads to 

V| fx = 0,       vl*2 = o (5.18) 

Now define    4>(p,z)    by 

,« T A3 
i   r (1)   k (2> 

a7;f3 = -2f2. 

<p>], 
(5.19) 

From (5.19), (5.15), (5.1.), (5.1, follows 

u   = - UJL • b) <b 

uz = aV2^ + (/JL - a) 4? 

(5.20) 

and (5.13),  (5.H),  (5.18), (5.19) imply 

= V72 „2 rt0 =vj^|4) =o. (5.21) 

We have shown that, barring the exceptional case LL   + b = 0, every 

solution of the displacement equations of equilibrium (Ii.6) admits the 

representation (5.20) in terms of the stress function   <|)    which is sub- 

ject to (5.21).    Moreover, a direct substitution confirms that every dis- 

placement field of the form (5.20), with    (J>    a particular solution of 

(5.21), satisfies (U.6) even if ^U + b = 0.    Equations (5.20),  (5.21), 

except for an uressential constant multiplier of    <p, are identical with 

the stress-function approach given by Lekhnitsky [3]t and independently 

arrived at by Elliot £7].   Applying the theorem of Section 2 to (5.21), 



18 

and recalling (5.7)» we note that the general solution of (5.21) may be 

written as 

$(p,z) = ({Xj-fy), z/c^ • zk4>2(/),z/c2), (5.22) 

where (Jl(p,z), <P_(O,Z) are arbitrary axisymmetric harmonic functions 

and k is given by (5.13)• The cylindrical components of stress belonging 

to the displacements (5.20) are obtained with the aid of (li.3)> (h.U) and 

may be omitted here. 

In particular, if the medium is isotropic, let 

x = 2/1 4>. 
1-2^ 

In view of (3.16), Equations (5.20), (5.21) here reduce to 

,2 

(5.23) 

2/*u    = -  X     ,      2/f^- 2<! " »V   X- \ f zzJ 

vhX. = 0, 
(5.2U) 

8 which is Love's stress-function approach   to isotropic problems with 

torsionless axisymmetry. 

Case 2;   JUL + b = 0. 

In this special instance (5.U) degenerate into 

^^',B- 0, 
r^2v      a  7 

5.10), 

A=%> c2-i- 2~yU' 

= 0, (5.25) 

(5.26) 

See [1], p. 276. 
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Consequently, according to (5.1), (5.7)> the general solution of (li.6) now 

appears as 

u   = U    , u   = V 

V^U = 0, V^V = 0 

and is thus again expressible in terms of two arbitrary harmonic functions. 

• 
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